
The Importance of Modeling Data 
Missingness in Algorithmic Fairness

Motivation

q In most fair machine learning settings, the training data has some form of
missingness.

• Using a causal graph based framework (based on Mohan and Pearl,
2020), we formally discuss how past decisions affect data missingness.

• With motivating examples for different kinds of past decision-making, we
show which parts of the joint distribution can be recovered from the
incomplete training data and which can not be recovered.

• Interestingly, in many scenarios of missingness, the distributions used in
common fairness algorithms are not recoverable.

• We show how the above results can guide the design of fair algorithms in
practice by proposing a detail-free, decentralized and fair algorithm for
multi-stage setting.

• Our theoretical and empirical analysis shows that the algorithm provides
same utility as an oracle algorithm which assumes full centralization and
knowledge of non-recoverable distributions
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q Many benchmark training datasets used in the fair machine learning
literature (e.g. the German Credit dataset) have this kind of missingness.

q Most of the state-of-the-art fair machine learning algorithms do not take
data missingness into account. Due to this, a supposedly fair classifier
can be arbitrarily unfair in the real world.

q The above figure shows a very common type of missingness in the
training data: only those training instances, for which decisions in the
past were positive, appear in the training data.

Application: Multi-Stage Decision Making

Ø Case 1: When fully automated decisions cause missingness. 

𝐷 - Past Decision,       𝑋 - Non-Sensitive Features,    𝑍 - Sensitive Feature
𝑌 – Outcome,              %𝑌 - Classifier’s prediction,              𝑉∗ - Observed 𝑉

Ø Case 2: When human decisions cause missingness.
(U: Unobserved Features)

Ø Case 3: When machine-aided decisions cause missingness.

≠ because

⟹ Equality of opportunity constraints, estimated 
naively from training data, are inconsistent.

Also true for demographic parity constraints. 
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Multi-stage decision-making processes are common, e.g., in hiring,
university admissions and lending. At each stage of the selection process,
decision makers request or collect new features about the individuals and
make decisions on whether to forward an individual to the next stage or not.
Each stage of the selection process narrows down (subject to budget
constraints) the pool of individuals and more features are observed in the
subsequent stages for individuals who pass the previous stage.

Causal Graphs for Data Missingness in 2-Stage 
Decision Making Process

Joint distribution 𝑃(𝑋", 𝑋#)
is non-recoverable.

On the other hand,
𝑃(𝑌|𝑋", 𝑋#) can be
consistently estimated.

𝑃(𝑌|𝑋") can be recovered
by factorization.

𝑃 𝑌 𝑋, 𝑍 𝑃(𝑌|𝑋) and 𝑃 𝑋 are other distributions assumed to be known in many
fair ML algorithms. Using causal graphs, we reason about their identifiability.

The 𝐷𝐹! (Detail-Free, Decentralized and Fair) Algorithm 
for Multi-State Decision-Making
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The 𝐷𝐹# algorithm solves the following optimization problem at every stage
𝑖 ∈ {1, 2, … 𝑘}:

where 𝑃 𝑌 = 1 7𝑌$ = 1) is the precision of the decisions taken at stage 𝑖,
𝑃 7𝑌$ = 1 = 𝛼$ is the budget constraint at stage 𝑖, and 𝑓$(7𝑌$) = 0 is the
fairness constraint at stage 𝑖. In the paper, we show how to write the
objective and the constraints using only the recoverable distributions
𝑃(𝑌|𝑋", 𝑋#) and 𝑃 𝑌 𝑋" . The performance of the 𝐷𝐹# algorithm is
guaranteed relative to an oracle algorithm (EAGGL), if the features used in
different stages provide coherent information about the outcome 𝑌. The
following figure compares the utility of the two algorithms under fairness
(EOP) constraints.
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